
Harvesting the Web:
Automated Datagathering with
PowerShell
Presented by Mark Minasi
mark@minasi.com
twitter @mminasi
Newsletter at www.minasi.com

1

Copyright 2016 Mark Minasi; do not copy or
redistribute

So, I live near the water sometimes…

• … and I have been a real body surfing fan since I was four
years old

• But now I'm a bit pickier about when I go into the water, and
know when the conditions are best:
• Water temperature over 74 degrees F

• Within 90 minutes of low tide either way

• Plus or minus two or three days around full or new Moons

• And clearly I'd love to enlist PowerShell in my data quest

2

Before PowerShell, I Would…

• Fire up a web browser

• Find the water temperature near the "Duck research pier" in
Duck, NC

• Phase of the moon can either be estimated
• (Time between full moons is 29.5 days)
• There are phase-of-moon sites

• Low tides can be found on many sites as well

• I'd like to collect that all in one place, maybe a web page

• If only I could automate that…

4

PowerShell's Tools

• Two cmdlets are essentially web browsers
• Invoke-WebRequest ("IWR")

• Invoke-RESTMethod ("IRM")

• One is a pathway to "SOAP" web services
• New-WebServiceProxy

• All Powershell 3.0 and later

5

Four Approaches to Collecting Data

• Screen scraping

• Tell PowerShell to download a file, like a photo

• Query SOAP-type web services

• Query RESTful services

• And a sort of "fifth" – filling in forms

6

Where Can We Find Duck's Ocean
Temperature?

• My go-to location is NOAA's array of sensor buoys

• Duck's site ID has an ID value of "DUKN7"

• It's a research pier with several instrument packages

• Google DUKN7, or browse to

• www.ndbc.noaa.gov/station_page.php?station=dukn7

7

Sample Home Page

8

So Our First Goal…

• Use PowerShell to simulate pointing a browser at the NOAA
site

• Save its (ugly) raw HTML to a "variable," something that lets
us temporarily store data; this will be "string" data

• Use a "regular expression capture" to find and extract just
the digits of the water temperature by building a "regex
pattern"

• The capture will end up with just the digits of the water
temperature

9

PowerShell's Browser: Invoke-WebRequest

• We'll use Invoke-WebRequest, alias IWR… example:

• Invoke-WebRequest 'http://www.minasi.com'

• The result is a bit of a text mess, so we'll want to parse it

• Normally we retrieve the command's output to a PowerShell
"variable," which is just a name that starts with a dollar sign

• $R = Invoke-WebRequest 'http://www.minasi.com'

• You could just see the output of the command by typing

• $R

10

What's in There?

• With PowerShell, data is structured with a "document
model," and has parts and attributes

• $R | Get-Member shows what's in there, like
• $R.StatusCode returns things like 200 (success), 404 etc

• $R.headers dumps headers

• $R.Scripts shows scripts, .forms shows forms, there is .rawcontent,
.content, .images and more

• $R.Content basically looks like doing a "view source" on a web
page

11

Next Step: Analyze the Output

• Get the pier's home page:
• $R = IWR 'www.ndbc.noaa.gov/station_page.php?station=dukn7'
• We're going to want to take a close look at the raw HTML text that the

site returns so we can give PowerShell a pattern to use when extracting
the temperature

• That HTML is in $R.content… type it once and you'll see:
• $R.content
• That's a mess, so put it in the clipboard:
• $R.content | Set-Clipboard
• Open Notepad and paste it in so we can look at it and figure out how to

pull out the temperature number / numbers

12

13

Analyze the Raw HTML at the Duck Pier

In Notepad, search for "WTMP)" (the label) and we find this:

• Another search shows no other instance of "(WTMP)"
• The Fahrenheit values will always be two digits, a period and a digit… right?
• So we need a plan to pluck out the dd.d with the data
• We can do this with a "regular expression capture" or "regex"
• Here's how it works…

14

Extract ("Capture") Only the Temperature

• A regex capture requires that I build a sort description of the
entire page – yes, it could be lengthy – and inside that
description, I point regex at the specific data that I want

• Again, I don't care about 99% of the HTML from the page,
just the useful data

• Even if I successfully point out what I want, the capture will
fail if I have not described the HTML page completely

• So here's my plan (in English, not regex):

15

The Plan: Regions of the HTML

We have no interest before "WTMP)," so the pattern in the
beginning is "match/skip anything and keep doing it until you…"

…Match "WTMP)" and stop

From there, there's only white space and text until we hit the
temperature, so we'll tell our pattern matcher to just
"match/skip any non-digit until you…"

…. Match "[digit][digit].[digit]" and then save ("capture") that
dd.d text into a variable called $1

From there, match/skip everything until you get to the end of
the text

Result: our temperature will be in the variable 16

Regex Patterns: Reference

• Don't sweat the regex, but if you want to read along…

• [\S\s]+ means "any character, and at least one of them"

• WTMP\) means "WTMP)" but the ")" must be "escaped" by a \
prefixed to it

• [\D]+ means an uninterrupted string of "non-digit" characters

• (\d\d\.\d) means "two digits, period and digit" and capture
them

17

The Regular Expression in Pieces

[\S\s]+ WTMP\) [\D]+ (\d\d\.\d) [\S\s]+
Match/skip
anything

Match an exact
pattern of
WTMP), skip to
next

Match/skip past
all non-digits

Match nn.n and
capture it to $1

Match/skip past
anything

The parentheses mean, "extract
('capture') this text." And, you can have
as many "capture groups" as you like.

18

Where the Capture Goes: Regex "Replace"

• In a regular expression, the first capture goes into a space
called $1 and, yes, that looks like a PowerShell variable, but it
isn't… it's just a coincidence

• If there were a second capture group, it'd go into $2, the
third in $3 and so on

• The tool is –replace, and a simple (non-regex) example is

• PS C:\> "High seas" -replace "seas","time"

• High time

19

Doing it

• The regular expression in a variable is

• $p='[\S\s]+WTMP\)[\D]+(\d\d\.\d)[\S\s]+'

• Basic PoSH syntax looks like

• $result = $string –Replace PATTERN, '$1'

• In our case,
• $TempVal = $r.content -replace $p,'$1'

• $TempVal is a string, but we'd like a number. Convert it like this
with a "cast:"
• [double]$Mercury = $TempVal

21

Collected…

• $URI = 'http://www.ndbc.noaa.gov/station_page.php?station=dukn7'

• $R = IWR $URI

• $p='[\S\s]+WTMP\)[\D]+(\d\d\.\d)[\S\s]+'

• $TempVal = $r.content -replace $p,'$1'

• [double]$Mercury = $TempVal

• $Mercury

22

Result

• Use the regex tools, you needn't become an expert

• I prototype everything with regexr.com, regex101.com

• Lots of other sites do the same thing

• The point is that after an hour of experimentation I was able
to create a regex pattern that pulled out the F temperature

• That let me create a module with a cmdlet "get-duck"

• This method of getting data is called "screen scraping"

23

Harvest Job Two:
Downloading Files

27

File Downloads with IWR

• We can do more than just grabbing text

• Invoke-WebRequest (alias: IWR) can download files

• Just add the -outfile parameter

• Example:

• iwr "www.minasi.com/picture.jpg" -OutFile C:\scripts\testit.jpg

• Remember, you can get a list of the images on a web page as an
attribute, as in

• (iwr www.minasi.com).images.src

28

Harvest Job Three: Web
Services
(boy, Job Two didn't take all that long, did it?)

29

Thus far's been nice, but…

Screen scraping is a pain in the neck. And lots of folks in need of web
data don't feel like screwing around with regex patterns.

So around 2000, coders started working on a better way.

(That said, understand that sometimes screen scraping is the only way.)

30

Web Services: the Better Way

• We're used to getting data from a web site interactively with
a client tool, a browser showing a home page or the like

• But some web sites alternatively cater to code that isn't a
human-friendly browser, but instead some automated tool
looking for a given chunk of data without the pictures and
other stuff

• Such a site is delivering what's called a "web service"

• There are two main schools of web services… SOAP and REST

31

SOAP (XML) file
delivered via POST

SOAP file with
answers

CSV or TSV

Non-SOAP XML data

XML

CSV or TSV

Name/value inputs
in a query string via

GET

Inputs via POST
(usually query string,
but not necessarily)

RESTful Web Service

Web Services Overview

SOAP Web Service

JSON
32

XML and JSON Fundamentals

• Web services often deliver structured, hierarchical
information -- an object with attributes that may be objects
themselves

• We'll often want to express that data in a text form

• In the late 90s, XML caught on as a popular format

• More recently, JSON is gaining popularity

• Web services often deliver their data in XML or JSON

• Here's a quick look at them

33

XML Components and Terms

• Created 1998-ish

• Looks like HTML, but it's case sensitive

• <datanow>67.4</datanow>

• That whole thing is called an element, and that would be called a
"datanow" element

• "67.4" is called the element's text, which in XML-ese is its #text, which
as you might guess could give PowerShell a bit of heartburn

• An alternative way to convey a data value in an element would be an
attribute, like

• <datanow temperature="67.4"></datanow>

Element, text, attribute

34

More XML Notes

• XML's hierarchy exists via elements insides elements; example:

• <datanow>
• <readingday>Tuesday</readingday>
• <ValueRead>67.4</ValueRead>

• </datanow>

• As everyone gets to define their own XML elements and collisions could
be troublesome, XML element names can have prefixes that refer to
"XML namespaces" and look like this:

• <mmspace:datanow>67.4</mmspace:datanow>
• First line in an XML object is often
• <?xml version="1.0" encoding="UTF-8"?>

35

JSON

• Javascript Structured Object Notation

• Sort of like XML in its structured-ness

• The look is quite different

• A bit newer, 2006-ish

• So let's look at a small set of hierarchical data and render it
in XML and JSON

36

Example Hierarchy: Animal Classification

Three instances, each with two characteristics -- blood
type and number of heart chambers

37

In JSON

38

In XML

39

Web Service Types: SOAP

• System Object Access Protocol = SOAP

• The notion was invented around 2000

• The idea was to POST a structured XML message (in "SOAP"
format) with inputs for the request

• The response shows up as another XML SOAP message with
the answer delivered in the SOAP XML

• This has largely been replaced by the alternative model,
REST, but there are many sites on the Web that still deliver
via SOAP

41

Web Services: RESTful Services

• REST="representational state transformation"
• Yup, just about as useful as SOA or SMB acronym-wise
• More simply, it means that you basically just send URLs with

"field/value pairs" as a "query string"
• Data is then delivered as some kind of structured text, either CSV,

XML or the JSON
• XML and JSON let you deliver hierarchical data, like objects --

things with attributes
• Although SOAP is older, we'll start from REST, as it's far more

common

42

How High is the Rainbow River?

• The USGS maintains a lot of geological and hydrological data
from sensors around the country

• One is a height gauge on the Rainbow River in Florida
• (It's an unusual river in that it is fed solely by springs, not runoff

or snowmelt -- the springs produce a half-billion gallons of water
every day)

• It's pretty stable, but with enough rainfall the springs do get a bit
more active, albeit delayed by a month

• If it gets to a depth of about seven feet at the sensor, things
would be messy for me, so it's nice to be able to get status info
from anywhere

a REST example

43

A Sample Rainbow Query

• This will return the depth of the river at the last gauge (they
write it "gage") reading:

• http://waterservices.usgs.gov/nwis/iv/?sites=02313098&par
ameterCd=00065

• But before we look at the results of that, let's do a quick
sidebar on this thing:

• ?sites=02313098¶meterCd=00065

• Notice that this "RESTful" query is just a long URL

• How did I know? They have a nice tool to build URLs

44

Web Review: Query Strings

• Sometimes we need to pass parameters to a Web site, as in
the previous case -- 02313098 was the sensor's name and
00065 said, "I want the river depth," as opposed to its speed,
temperature or nitrogen content

• That URL was a "query string" and has two parts: a base URL
(waterservices.usgs.gov/nwis/iv/) and field/name pairs
formatted as a question mark, a pair, an ampersand ("&"),
another pair, etc, as in

• xyz.com/data/?username=jack&query=ssn&format=XML

45

Time to Play, "Find the Element in the XML"

• Your data comes back in XML

• There will be piles of other junk in there besides your simple
"how high is the friggin' water?" query

• First, I look for a version of the web site that is browser-
friendly so I can get the current height, like 6.01

• Then I run the web service, get its XML and either put it into
Chrome or XML Notepad

• Then I search on the current data value to find where it sits
in the XML hierarchy

46

The Output

47

Oh, So It's Just a Matter Of…

• Picking out the object in the result

• And the answer was:

• $wtreq.CompositeObservation.result.Composite.valueComp
onents.Array.valueComponents.Composite.valueComponent
s.Array.valueComponents.Composite.valueComponents.Com
positeValue.valueComponents.quantity

• Yuk. Time for a better way

48

So How Do I Extract That?

• You could figure out the structure and pluck out just the
6.01… but trust me, you don't want to do that

• Instead, note that the XML element with the data we want is
named "value" in an XML namespace called "ns1:"

• <ns1:value qualifiers="P" dateTime="2015-10-
28T09:45:00.000-04:00">6.01</ns1:value>

• (Remember, XML is -- unlike HTML -- case-sensitive)

• That lets us do something called an "XPath query" to pluck
out that data

49

First, Capture the Output

• $URI =
"http://waterservices.usgs.gov/nwis/iv/?sites=02313098¶meter
Cd=00065"
[string]$MyResult=(Invoke-WebRequest $URI)

• Notice the [string]... that is a "cast," which forces PowerShell
to deliver that not as XML but as a string

• The next cmdlet needs the data as a string

• It'll extract the 6.01 number

50

How XPath Delivers the Number

• XPath is a query language (yes, you heard that right, another
query language) that delivers parts of an XML document
based on a query

• Here, we want to say
• Find the element named <value>, regardless of its namespace

• Extract from the element its "#text," the actual 6.01 value in this
case (it'll vary every time we call it, of course)

• By the way, the time of the measurement is an XML attribute

51

I'll Spare You the XPath Lecture

• Here's the query string:

• "//*[local-name()='value']")

• //* means search the XML all over

• [local-name()='value'] means find me an element whose
name is "value," irrespective of any namespaces

• That finds the node -- then we'll tell PowerShell to give us
the text (the 6.01) via ".node.'#'"

52

This Gets the Water Height

$URI =
'http://waterservices.usgs.gov/nwis/iv/?sites=02313098¶meterCd=000
65'

[string]$MyResult=(Invoke-WebRequest $URI)

$DesiredNode = (Select-XML -content $MyResult -XPath "//*[local-
name()='value']")

$WaterHeight = $desiredNode.node.'#text'

$waterHeight

53

Reviewing…

• Get your URL for your REST service

• Have it dump its data out in XML

• Look at the XML, find the name of the element that contains
the data you want

• Use my Select-XML command and change "value" to
whatever your element name is

54

Deflecting JSON: Invoke-RestMethod

• Next let's tackle a RESTful service that returns its responses
in JSON

• (Unfortunately, there's no Xpath for JSON)

• We'll try the BING geolocation service which can take a
postal code as input and return the zip code's country,
county, state and city

55

Get a Key

• Bing lets you do 125,000 lookups a year free, but you need a
key

• Just go to at https://msdn.microsoft.com/en-
us/library/gg650598.aspx and punch in your MSA

• Looks like “P8xPNZEHQTY9fKoDRw0NyOjysoCN3zV-Tbh-
AEQBNkRSk8fsPg9916a9gOL7cQ”
http://dev.virtualearth.net/REST/v1/Locations?q=12345,%20
USA&key=BingKey

• I'm putting mine in $BingKey for these examples

56

Where is Zip 12345?

• Just build an URL looking like
• http://dev.virtualearth.net/REST/v1/Locations?q=12345,USA&key=KEY

• This works:

• $URI="http://dev.virtualearth.net/REST/v1/Locations?q=123
45,USA&key=" + $BingKey

• $r=IWR $URI

• Look at it:

• $R.Content

57

58

Hmmm… It Appears JSON Is…

• … wearing his hockey mask

• Let's just use JSON-Path (like Xpath)… oops, there isn't one

• Fortunately, there is a tool that will take JSON-y data and
make it a PowerShell object, ConvertFrom-JSON

• But there's an easier way: Invoke-Restmethod

• Replaces IWR when you expect JSON output

• $R = Invoke-Restmethod $URI

• "IRM" is its alias

59

Now We Can Crack it Open

• Look at $R… looks like ResourceSets is the only useful data
• $R.ResourceSets shows what's there
• That contains "resources" so look there:
• $R.ResourceSets.resources
• Contains "addresses," so examine them:
• $R.ResourceSets.resources.addresses
• Now we're talking!
• Look also at .point, .confidence
• Then try it on zip 90000

60

A SOAP Example

• Most SOAP services are on the way out, or, worse, not
maintained and return useless answers, but here's a
mortgage calculator:

• $URI='http://www.webservicex.net/mortgage.asmx?wsdl'

• $Proxy = New-WebserviceProxy $URI –Namespace X

• $Proxy | get-member -MemberType Method Get*

• Look at the docs at www.webservicex.net/mortgage.asmx
and you see the desired inputs, which will give us clues
about how to call the service

61

Using $Proxy

• It contains "methods," functions that can query the web
service to calculate for you

• Note the one named GetMortgagePayment

• So try this:

• $Proxy.GetMortgagePayment(30,1.0,360000,0,0)

62

Retrieving 400/500 Errors

• You don't always get a lot of "what caused this?" from Invoke-
RestMethod or Invoke-WebRequest, but you can…

Try {$R = IWR $URI -infile T1.XML -Method POST -ContentType "text/xml"}
Catch {

$result = $_.Exception.Response.GetResponseStream()
$reader = New-Object System.IO.StreamReader($result)
$responseBody = $reader.ReadToEnd()
$responsebody

}

63

Harvest Task Four: Forms

64

Forms and PowerShell

• Web services are great, but the fact is that you can get more
web sites to cough up their data after you fill in a form (and
then do some screen scraping)

• Here's an example I built at
http://www.minasi.com/addit.htm

• You fill in two numeric fields, click the SUBMIT! button and
the system returns a page with the sum of the two numbers

• Result page is http://addit-worker.asp

65

Fill in the Form

66

Result

67

Now Let's Let PowerShell Do It

• Gather data:
$uri="http://minasi.com/addit.htm"

$r = iwr $uri

$r.Forms

• Result:

Fields

{[addend1,], [addend2,], [B1, SUBMIT!]}

68

My Next Question…

• … how to push the button?

• Actually, you don't… run a network sniffer or Fiddler or
something like that, and you'll see that when the page comes
back, it turns out not to be addit.htm but addit-worker.asp
and a querystring:

• addend1=55&addend2=82&B1=SUBMIT%21

• Remember the –body parameters? The querystring goes in
there

69

An Example Tool: Fiddler

• Download it from telerik.com

• Start it up

• Open your browser, fill in the fields, click SUBMIT!

• You'll see in the left-hand pane a reference to addit-
helper.asp – click that, look the right and choose "TextView"

• In the text field below it, you see the querystring

• Again, now we have the pieces

70

Fiddler Left Pane

71

Fiddler Right Pane

72

Assembling the Query

• $uri = "http://minasi.com/addit-worker.asp"

• $body = "addend1=55&addend2=82&B1=SUBMIT%21"

• $R = IWR $URI -method POST -body $body

• Type "$R.content," and you see

• Sum= 137

73

That's All We Have Time For

• Thank you for attending

• I tweet at mminasi

• Please do an evaluation, thanks again for coming!

74

